1 Problem Definitions and Statement

Definition 1. A point cloud A over \mathbb{R}^n is a sequence of $|A| = k \in \mathbb{N}^+$ vectors in R^n , that is,

$$
A = (\mathbf{a_1}, \dots, \mathbf{a_k}) \quad \forall i \in [k], \, \mathbf{a_i} \in \mathbb{R}^n
$$

Definition 2. The *centroid* of a point cloud A is defined to be

$$
\bar{\mathbf{a}} = \frac{1}{|A|} \sum_{\mathbf{a} \in A} \mathbf{a}
$$

Definition 3. A rigid-body transformation on a point cloud A is an affine map $T : \mathbb{R}^n \to \mathbb{R}^n$ determined by an rotation matrix $R \in \mathbb{R}^{n \times n}$ and translation $t \in \mathbb{R}^n$ and given by

$$
T: \mathbf{a} \mapsto R(\mathbf{a} - \bar{\mathbf{a}}) + \bar{\mathbf{a}} + \mathbf{t}
$$

that is, a rotation around the centroid of followed by a translation.

The POINT-CLOUD REGISTRATION PROBLEM is, given two point clouds A, B and a pairing function $\varphi(T, \cdot)$ based on a rigid-body transformation T such that $\forall a \in A, \varphi(T, a) \in B$, to determine the rigid-body transformation T that optimizes

$$
\min_{T} \sum_{\mathbf{a} \in A} ||T(\mathbf{a}) - \varphi(T, \mathbf{a})||^2 \tag{1}
$$

Definition 4. The *point-to-point metric* for two point clouds A, B is given by

$$
\varphi(T, \mathbf{a}) = \underset{b \in B}{\operatorname{argmin}} \|T(\mathbf{a}) - \mathbf{b}\|^2 \tag{2}
$$

From here on, we will use the point-to-point metric unless stated otherwise.

2 Solution

In general, there is no closed-form solution that minimizes (1). When there is no translation, Horn (1987) derives a closed-form solution; therefore, if an initial odometry estimate is precise enough, this translation can be applied to all the points in the point cloud, producing a problem instance with zero translation.

2.1 Approximation for \mathbb{R}^2

Consider the situation where the point clouds A and B (with n and m points respectively) are over \mathbb{R}^2 . First, let us simplify the cost function $\mathcal{L}.$

$$
\mathcal{L} = \min_{T} \sum_{\mathbf{a} \in A} ||T(\mathbf{a}) - \varphi(T, \mathbf{a})||^2
$$

\n
$$
\implies \min_{T} \sum_{\mathbf{a} \in A} ||Ra' + \bar{\mathbf{a}} + \mathbf{t} - \varphi(T, \mathbf{a})||^2 \qquad \text{let } \mathbf{a}' = \mathbf{a} - \bar{\mathbf{a}}
$$

\n
$$
\implies \min_{T} \sum_{\mathbf{a} \in A} ||Ra' + \mathbf{t} - \varphi(T, \mathbf{a})||^2 \qquad \text{since } \bar{\mathbf{a}} \text{ is constant}
$$

In \mathbb{R}^2 , the rotation matrix R takes the form

$$
R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
$$

where it is described by a single parameter θ . Therefore, the task is to optimize $\mathcal L$ over the parameter space (θ, t_x, t_y) . We take b to be $\varphi(T, a)$ where context permits.

$$
\frac{\partial \mathcal{L}}{\partial t_x} = \sum_{\mathbf{a} \in A} 2t_x + 2a'_x \cos(\theta) - 2a'_y \sin(\theta) - 2b_x
$$

$$
\frac{\partial \mathcal{L}}{\partial t_y} = \sum_{\mathbf{a} \in A} 2t_y + 2a'_x \sin(\theta) + 2a'_y \cos(\theta) - 2b_y
$$

$$
\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{\mathbf{a} \in A} 2(a'_x \sin(\theta) + a'_y \cos(\theta))(b_x - t_x - a'_x \cos(\theta) + a'_y \sin(\theta))
$$

$$
+ 2(a'_x \cos(\theta) - a'_y \sin(\theta))(t_y + a'_x \sin(\theta) + a'_y \cos(\theta) - b_y)
$$

The roots of $\partial \mathcal{L}/\partial t_x$ and $\partial \mathcal{L}/\partial t_y$ can easily be solved in closed form;

$$
t_x^* = \frac{1}{n} \sum_{\mathbf{a} \in A} -a'_x \cos(\theta) + a'_y \sin(\theta) + b_x
$$

$$
t_y^* = \frac{1}{n} \sum_{\mathbf{a} \in A} -a'_x \sin(\theta) - a'_y \cos(\theta) + b_y
$$

or

$$
\mathbf{t}^* = \frac{1}{n} \sum_{\mathbf{a} \in A} \mathbf{b} - R \mathbf{a}'
$$